B. Using the chart on the previous page, calculate the following values.

$$SS_T = \sum \left[\frac{(\sum X_T)^2}{n}\right] - \frac{(\sum X)^2}{N}$$

$$SS_E = \sum x^2 - \sum \left[\frac{(\sum x_T)^2}{n}\right]$$

$$SS_{TOTAL} = \sum X^2 - \frac{(\sum X)^2}{N}$$

$$MS_T = \frac{SS_T}{t-1} =$$

$$MS_E = \frac{SS_E}{N-t} =$$

C. Complete the following chart using data accumulated to this point.

Variance Analysis Summary Table				
Variance Sources	df	Sum of the Squares	Mean Squares	ANOVA
Between Treatments	t - 1 =	SS _T =	MS _T =	
Within Treatments (error)	N - t =	SS _E =	MS _E =	F =
Total Variance	N - 1 =	SS _{TOTAL} =		

D. Using the 5-step approach to hypothesis testing, test at the .05 level whether these sample means come from populations with equal means.

E. Answer problem D at the .01 level of significance.