B. Using the chart on the previous page, calculate the following values. $$SS_T = \sum \left[\frac{(\sum X_T)^2}{n}\right] - \frac{(\sum X)^2}{N}$$ $$SS_E = \sum x^2 - \sum \left[\frac{(\sum x_T)^2}{n}\right]$$ $$SS_{TOTAL} = \sum X^2 - \frac{(\sum X)^2}{N}$$ $$MS_T = \frac{SS_T}{t-1} =$$ $$MS_E = \frac{SS_E}{N-t} =$$ C. Complete the following chart using data accumulated to this point. | Variance Analysis Summary Table | | | | | |---------------------------------|---------|-----------------------|-------------------|-------| | Variance
Sources | df | Sum of the Squares | Mean Squares | ANOVA | | Between
Treatments | t - 1 = | SS _T = | MS _T = | | | Within
Treatments
(error) | N - t = | SS _E = | MS _E = | F = | | Total
Variance | N - 1 = | SS _{TOTAL} = | | | D. Using the 5-step approach to hypothesis testing, test at the .05 level whether these sample means come from populations with equal means. E. Answer problem D at the .01 level of significance.